Page images
PDF
EPUB

could such a coincidence occur, than by an intentional adjustment of these two things to one another? by a selection of such an organisation in plants, as would fit them to the earth on which they were to grow; by an adaptation of construction to conditions; of the scale of the construction to the scale of conditions.

It cannot be accepted as an explanation of this fact in the economy of plants, that it is necessary to their existence; that no plants could possibly have subsisted, and come down to us, except those which were thus suited to their place on the earth. This is true; but this does not at all remove the necessity of recurring to design as the origin of the construction by which the existence and continuance of plants is made possible. A watch could not go, except there were the most exact adjustment in the forms and positions of its wheels; yet no one would accept it as an explanation of the origin of such forms and positions, that the watch would not go if these were other than they are. If the objector were to suppose that plants were originally fitted to years of various lengths, and that such only have survived to the present time, as had a cycle of a length equal to our present year, or one which could be accommodated to it; we should reply, that the assumption is too gratuitous and extravagant to require much consideration; but that, moreover, it does not remove the difficulty, How came the functions of plants to be periodical at all? Here is, in the first instance, an agreement in the form of the laws that prevail in the organic and in the inorganic world, which appears to us a clear evidence of design in their

Author. And the same kind of reply might be made to any similar objection to our argument. Any supposition that the universe has gradually approximated to that state of harmony among the operations of its different parts, of which we have one instance in the coincidence now under consideration, would make it necessary for the objector to assume a previous state of things preparatory to this perfect correspondence. And in this preparatory condition we should still be able to trace the rudiments of that harmony, for which it was proposed to account: so that even the most unbounded license of hypothesis would not enable the opponent to obliterate the traces of an intentional adaptation of one part of nature to another.

Nor would it at all affect the argument, if these periodical occurrences could be traced to some proximate cause if for instance it could be shown, that the budding or flowering of plants is brought about at particular intervals, by the nutriment accumulated in their vessels during the preceding months. For the question would still remain, how their functions were so adjusted, that the accumulation of the nutriment necessary for budding and flowering, together with the operation itself, comes to occupy exactly a year, instead of a month only, or ten years. There must be in their

structure some reference to time: how did such a reference occur? how was it determined to the particular time of the earth's revolution round the sun? This could be no otherwise, as we conceive, than by design and appointment.

We are left therefore with this manifest adjustment

[ocr errors]

before us, of two parts of the universe at first sight so remote; the dimensions of the solar system and the powers of vegetable life. These two things are so related, that one has been made to fit the other. The relation is as clear as that of a watch to a sundial. If a person were to compare the watch with a dial, hour after hour, and day after day, it would be impossible for him not to believe that the watch had been contrived to accommodate itself to the solar day. We have at least ten thousand kinds of vegetable watches of the most various forms, which are all accommodated to the solar year; and the evidence of contrivance seems to be no more capable of being eluded in this case than in the other.

The same kind of argument might be applied to the animal creation. The pairing, nesting, hatching, fledging, and flight of birds, for instance, occupy each its peculiar time of the year; and, together with a proper period of rest, fill up the twelve months. The transformations of most insects have a similar reference to the seasons, their progress and duration. "In every species" (except man's), says a writer* on animals, there is a particular period of the year in which the reproductive system exercises its energies. And the season of love and the period of gestation are so arranged that the, young ones are produced at the time wherein the conditions of temperature are most suited to the commencement of life." It is not our business here to consider the details of such provisions, beautiful and striking as they are. But the prevalence of the great law

66

* Fleming. Zool. i. 400.

[ocr errors]

of periodicity in the vital functions of organised beings will be allowed to have a claim to be considered in its reference to astronomy, when it is seen that their periodical constitution derives its use from the periodical nature of the motions of the planets round the sun; and that the duration of such cycles in the existence of plants and animals has a reference to the arbitrary elements of the solar system: a reference which, we maintain, is inexplicable and unintelligible, except by admitting into our conceptions an intelligent Author, alike of the organic and inorganic universe.

CHAP. II.-The Length of the Day.

WE shall now consider another astronomical element, the time of the revolution of the earth on its axis; and we shall find here also that the structure of organised bodies is suited to this element;-that the cosmical and physiological arrangements are adapted to each other.

We can very easily conceive the earth to revolve on her axis faster or slower than she does, and thus the days to be longer or shorter than they are, without supposing any other change to take place. There is no apparent reason why this globe should turn on its axis. just three hundred and sixty-six times while it describes its orbit round the sun. The revolutions of the other planets, so far as we know them, do not appear to follow any rule by which they are connected with the distance from the sun. Mercury, Venus, and Mars have days nearly the length of ours. Jupiter and Saturn revolve in about ten hours each. For anything

we can discover, the earth might have revolved in this or any other smaller period; or we might have had, without mechanical inconvenience, much longer days than we have.

But the terrestrial day, and consequently the length of the cycle of light and darkness, being what it is, we find various parts of the constitution both of animals and vegetables, which have a periodical character in their functions, corresponding to the diurnal succession of external conditions; and we find that the length of the period, as it exists in their constitution, coincides with the length of the natural day.

The alternation of processes which takes place in plants by day and by night is less obvious, and less obviously essential to their well-being, than the annual series of changes. But there are abundance of facts which serve to show that such an alternation is part of the vegetable economy.

In the same manner in which Linnæus proposed a Calendar of Flora, he also proposed a Dial of Flora, or Flower-Clock; and this was to consist, as will readily be supposed, of plants, which mark certain hours of the day, by opening and shutting their flowers. Thus the day-lily (hemerocallis fulva) opens at five in the morning; the leontodon taraxacum, or common dandelion, at five or six; the hieracium latifolium (hawkweed), at seven; the hieracium pilosella at eight; the calendula arvensis, or marigold, at nine; the mesembryanthemum neapolitanum, at ten or eleven: and the closing of these and other flowers in the latter part of the day offers a similar system of hour marks.

« PreviousContinue »